
Linzhi Semiconductors

Linzhi Working Papers
No 10

Pseudo-Random Logic ASIC Design.
by Sonia Chen

March 2019

Keywords: LWP10, ProgPoW, ASIC Design, Estimates

This publication is available on https://linzhi.io
Telegram discussion https://t.me/LinzhiCorp

All original rights for text and media are released into the
public domain, attribution welcome. Rights of quoted or
translated sources remain with their respective owners.

https://linzhi.io/
https://t.me/LinzhiCorp

EIP 1057 (ProgPoW): Open Chip Design for only 1% cost/power increase EIP 1057 (ProgPoW)…

https://medium.com/@Linzhi/eip-1057-progpow-open-chip-design-for-only-1-cost-power-increase-eip-1057-progpow-d106d9baa6eb 1/6

Linzhi ASICs

Mar 29 · 4 min read

EIP 1057 (ProgPoW): Open Chip Design for 1% cost/power increase

�⇥⇤1%⌅⇧⌃⌥� ⌦↵���✏

Adding a pseudo-random program to the PoW algorithm is a key

technical idea described in EIP 1057 (ProgPoW). The theory goes that

the compute area of a GPU is underutilized compared to memory

bandwidth. ProgPoW is then designed such that it “saturates both

compute and memory bandwidth at once”.

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1057.md

Since the GPU is almost fully utilized, there’s little opportunity for

specialized ASICs to gain efficiency.

There should be little opportunity for efficiency gains compared to a

commodity GPU.

While a custom ASIC is still possible, the efficiency gains available are

minimal.

These would result in minimal, roughly 1.1x-1.2x, efficiency gains.

Bitmain and Innosilicon both currently have Ethash systems, a good

starting point for ProgPoW. What would they need to add for the new

EIP 1057 compute logic?

. . .

Math Block

First let’s look at Math() which includes 11 different instructions

// Random math between two input values

uint32_t Math(uint32_t a, uint32_t b, uint32_t r)

{

 switch (r % 11)

 {

 case 0: return a + b;

 case 1: return a * b;

 case 2: return mul_hi(a, b);

EIP 1057 (ProgPoW): Open Chip Design for only 1% cost/power increase EIP 1057 (ProgPoW)…

https://medium.com/@Linzhi/eip-1057-progpow-open-chip-design-for-only-1-cost-power-increase-eip-1057-progpow-d106d9baa6eb 2/6

 case 3: return min(a, b);

 case 4: return ROTL32(a, b);

 case 5: return ROTR32(a, b);

 case 6: return a & b;

 case 7: return a | b;

 case 8: return a ^ b;

 case 9: return clz(a) + clz(b);

 case 10: return popcount(a) + popcount(b);

 }

}

modulo 11 operation, this is quite small logic, ~400gate, 1ck

latency, can be a parallel process during mix read so we can hide

this latency.

32-bit Add, simple logic, ~300gate for a fast one.

32-bit Multiplier, mature IP, ~20Kgate for a fast one, since

multiplier only have ~4/11 activity rate, we can use a two cycle

multiplier to half the area, small possibility to increase delay.

Rotation operation can easily map to a multiplier, for example I

want to calculate ROTL(0x12345678, 8), I can do 0x12345678 *

0x00000100 = 0x0000001234567800, then we just need to OR

higher word and lower word together to get 0x34567812. so just

cost ~160gate extra logic

logic operation, A&B only cost 32 gate, A|B 32 gate, A^B 96 gate,

it looks like three different instructions but actually extremely

small on silicon (<30um²)

clz and popcount are also very small

We only need a multiplexer to select output.

Total size of Math() is about 0.0015mm² on a TSMC16ULP

process.

Merge() is similar but even smaller, only shifter, adder, and tiny

logic (no multipliers because constant multiply can be mapped

into adder).

Size of Merge() is roughly ~0.0005mm².

•

•

•

•

•

•

•

•

•

•

EIP 1057 (ProgPoW): Open Chip Design for only 1% cost/power increase EIP 1057 (ProgPoW)…

https://medium.com/@Linzhi/eip-1057-progpow-open-chip-design-for-only-1-cost-power-increase-eip-1057-progpow-d106d9baa6eb 3/6

. . .

Pipeline

Now we can build our pipeline, 4-stage:

CK1: Mix regfile read, two operators in parallel (calculate %11 at same

time)

CK2: Math()

CK3: Merge()

CK4: Mix write back to regfile

EIP 1057 (ProgPoW): Open Chip Design for only 1% cost/power increase EIP 1057 (ProgPoW)…

https://medium.com/@Linzhi/eip-1057-progpow-open-chip-design-for-only-1-cost-power-increase-eip-1057-progpow-d106d9baa6eb 4/6

Task latency is 4 cycles, but we can have 4 independent threads so we

can make this pipeline fully loaded.

Mix Regfile we use a 1W2R (1 write port, 2 read port) Regfile, mature

IP, 8KB (for 4 threads), single cycle read/write, 1GHz operation.

If you want load/unload mix data on the fly without disturbing the

pipeline, we can upgrade to a 12KB 2W3R Regfile. We then have extra

read/write ports for load/unload, and 12KB is enough for 6 tasks (4

running, 1 loading, 1 unloading).

An ASIC can implement 10K sets of that block:

running at 1GHz frequency

0.55V voltage (typical voltage for TSMC16ULP)

generating ~10T Math() + Merge() throughput per second

Power estimate roughly 3mW each pipeline, 30W in total.

No customized circuit/layout

•

•

•

•

•

EIP 1057 (ProgPoW): Open Chip Design for only 1% cost/power increase EIP 1057 (ProgPoW)…

https://medium.com/@Linzhi/eip-1057-progpow-open-chip-design-for-only-1-cost-power-increase-eip-1057-progpow-d106d9baa6eb 5/6

All standard cells, auto placement route

Use mature IP only

No aggressive overclocking

No aggressive under voltage

~8.4K Merge() and ~4.8K Math() per hash

pipeline includes 1 Merge() and 1 Math()

pipeline is only the logic part, not the memory part

the xGB memory are not included

we have 10T throughput on single chip asic, divided by 8.4K

Merge() per hash, means 1.2GHash

•

•

•

•

•

•

•

•

•

. . .

Performance

The design (logic part only) can provide 1.2 GHash ProgPoW

performance at 30W power.

Nvidia GTX1070Ti can provide 15.7 MHash at 115W, but including

memory.

. . .

Summary

The random instruction of EIP 1057 increases die cost/power by about

1%, and causes a die increase of <1mm². The proposed open design is

demonstrating a logic-only performance of 1.2 GHash at 30W and

could be deployed by Bitmain or Innosilicon, resulting in a machine

with about half the hashrate of their predecessors, similar to the best

GPUs.

If you are an independent chip designer and want to take the ProgPoW

design idea further, please get in touch. We hereby release the design

into the public domain. Hopefully the open design process can also

inspire some developers to learn more about the world of chip design.

EIP 1057 (ProgPoW): Open Chip Design for only 1% cost/power increase EIP 1057 (ProgPoW)…

https://medium.com/@Linzhi/eip-1057-progpow-open-chip-design-for-only-1-cost-power-increase-eip-1057-progpow-d106d9baa6eb 6/6

Linzhi Team, Shenzhen

Telegram: https://t.me/LinzhiCorp

email: sonia@linzhi.io

. . .

Thanks

Peter Salanki provided the initial idea for this writeup and encouraged

us to do it. Alexey Akhunov always encourages everyone to think for

themselves.

. . .

References

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1057.md

https://medium.com/@ifdefelse/understanding-progpow-performance-and-tuning-d72713898db3

https://medium.com/@infantry1337/comprehensive-progpow-benchmark-715126798476

https://etcsummit.com/2018-etc-summit/

Launch of Linzhi Ethash chip at ETC Summit:

https://www.youtube.com/watch?v=LMofyroBfio

Linzhi Website: https://linzhi.io/

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1057.md
https://medium.com/@ifdefelse/understanding-progpow-performance-and-tuning-d72713898db3
https://medium.com/@infantry1337/comprehensive-progpow-benchmark-715126798476
https://etcsummit.com/2018-etc-summit/
https://www.youtube.com/watch?v=LMofyroBfio
https://linzhi.io/

